Thermal convection in ice-I shells of Titan and Enceladus

نویسندگان

  • Giuseppe Mitri
  • Adam P. Showman
چکیده

Cassini–Huygens observations have shown that Titan and Enceladus are geologically active icy satellites. Mitri and Showman [Mitri, G., Showman, A.P., 2005. Icarus 177, 447–460] and McKinnon [McKinnon, W.B., 2006. Icarus 183, 435–450] investigated the dynamics of an ice shell overlying a pure liquid-water ocean and showed that transitions from a conductive state to a convective state have major implications for the surface tectonics. We extend this analysis to the case of ice shells overlying ammonia-water oceans. We explore the thermal state of Titan and Enceladus ice-I shells, and also we investigate the consequences of the ice-I shell conductive–convective switch for the geology. We show that thermal convection can occur, under a range of conditions, in the ice-I shells of Titan and Enceladus. Because the Rayleigh number Ra scales with δ/ηb, where δ is the thickness of the ice shell and ηb is the viscosity at the base of the ice-I shell, and because ammonia in the liquid layer (if any) strongly depresses the melting temperature of the water ice, Ra equals its critical value for two ice-I shell thicknesses: for relatively thin ice shell with warm, low-viscosity base (Onset I) and for thick ice shell with cold, high-viscosity base (Onset II). At Onset I, for a range of heat fluxes, two equilibrium states—corresponding to a thin, conductive shell and a thick, convective shell—exist for a given heat flux. Switches between these states can cause large, rapid changes in the ice-shell thickness. For Enceladus, we demonstrate that an Onset I transition can produce tectonic stress of ∼500 bars and fractures of several tens of km depth. At Onset II, in contrast, we demonstrate that zero equilibrium states exist for a range of heat fluxes. For a mean heat flux within this range, the satellite experiences oscillations in surface heat flux and satellite volume with periods of ∼50–800 Myr even when the interior heat production is constant or monotonically declining in time; these oscillations in the thermal state of the ice-I shell would cause repeated episodes of extensional and compressional tectonism. © 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convection in Enceladus’ ice shell: Conditions for initiation

[1] Observations of Enceladus by the Cassini spacecraft indicate that this tiny Saturnian moon is geologically active, with plumes of water vapor and ice particles erupting from its southern polar region. This activity suggests that tidal dissipation has become spatially localized, perhaps due to a compositional, rheological, and/or thermal anomaly in its ice shell. Here we examine the role tha...

متن کامل

Near-surface heating on Enceladus and the south polar thermal anomaly

[1] Strike-slip motion is predicted to be a consequence of diurnal tidal stresses in most satellites of the outer solar system. Such motion can lead to near-surface heating through friction or viscous dissipation. Here we discuss the effect of near-surface shear heating on convection in the underlying ice shells of icy satellites. We present models of convection in spherical shells including ti...

متن کامل

A model for the temperature-dependence of tidal dissipation in convective plumes on icy satellites: Implications for Europa and Enceladus

To explain the formation of surface features on Europa, Enceladus, and other satellites, many authors have postulated the spatial localization of tidal heating within convective plumes. However, the concept that enhanced tidal heating can occur within a convective plume has not been rigorously tested. Most models of this phenomenon adopt a tidal heating with a temperature-dependence derived for...

متن کامل

Mobile lid convection beneath Enceladus’ south polar terrain

[1] Enceladus’ south polar region has a large heat flux, 55–110 mW m , that is spatially associated with cryovolcanic and tectonic activity. Tidal dissipation and vigorous convection in the underlying ice shell are possible sources of heat, however, prior predictions of the heat flux carried by stagnant lid convection range from Fconv 15 to 30 mW m , too low to explain the observed heat flux. T...

متن کامل

Ocean Worlds in the Outer Solar System

Many outer solar system bodies are thought to harbor liquid water oceans beneath their ice shells. This article first reviews how such oceans are detected. We then discuss how they are maintained, when they formed, and what the oceans’ likely characteristics are. We focus in particular on Europa, Ganymede, Callisto, Titan and Enceladus, bodies for which there is direct evidence of subsurface oc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008